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Summary

� Climate change is simultaneously increasing carbon dioxide concentrations ([CO2]) and

temperature. These factors could interact to influence plant physiology and performance.

Alternatively, increased [CO2] may offset costs associated with elevated temperatures.

Furthermore, the interaction between elevated temperature and [CO2] may differentially

affect populations from along an elevational gradient and disrupt local adaptation.
� We conducted a multifactorial growth chamber experiment to examine the interactive effects

of temperature and [CO2] on fitness and ecophysiology of diverse accessions of Boechera stricta

(Brassicaceae) sourced from a broad elevational gradient in Colorado. We tested whether

increased [CO2] would enhance photosynthesis across accessions, and whether warmer condi-

tions would depress the fitness of high-elevation accessions owing to steep reductions in tem-

perature with increasing elevation in this system. Elevational clines in [CO2] are not as evident,

making it challenging to predict how locally adapted ecotypes will respond to elevated [CO2].
� This experiment revealed that elevated [CO2] increased photosynthesis and intrinsic water

use efficiency across all accessions. However, these instantaneous responses to treatments did

not translate to changes in fitness. Instead, increased temperatures reduced the probability of

reproduction for all accessions. Elevated [CO2] and increased temperatures interacted to shift

the adaptive landscape, favoring lower elevation accessions for the probability of survival and

fecundity.
� Our results suggest that elevated temperatures and [CO2] associated with climate change

could have severe negative consequences, especially for high-elevation populations.

Introduction

Climatic factors strongly influence the expression of traits and the
evolution of natural populations (Spence & Tingley, 2020). Indus-
trialization has altered complex suites of climatic conditions, such
as atmospheric carbon dioxide concentration (hereafter [CO2]) and
temperature (Tierney et al., 2020; IPCC, 2021), thereby imposing
novel patterns of selection on natural populations (Waldvogel
et al., 2020), which can decrease fitness (Anderson & Wadgy-
mar, 2020). Elevated [CO2] alone could enhance plant perfor-
mance (Mathias & Thomas, 2021); however, intensifying warming
could offset these fitness gains (Bogdziewicz et al., 2020; Liu
et al., 2022). Additionally, the interactive effects of changing [CO2]
and temperature can vary across the life cycle of a plant (Parmesan
& Hanley, 2015; Tietze et al., 2019), which highlights the need to
assess plant performance at multiple ontogenetic stages. Further-
more, robust predictions of the effects of climate change on plant
performance and fitness require multifactorial manipulations (Zan-
dalinas et al., 2024).

Ice core records indicate that global [CO2] varied between 175
and 300 ppm over the last 800 000 yr before industrialization

(Bereiter et al., 2015; Nehrbass-Ahles et al., 2020), reaching as
low as 180–190 ppm during the Last Glacial Maximum (Ahn &
Brook, 2008). Thus, plants have evolved in response to fluctuat-
ing carbon availability in the past. Today, however, plants are
exposed to [CO2] higher than any atmospheric concentration
experienced in the last 3.3 million years (de la Vega et al., 2020),
which can have profound ecophysiological (Leakey & Lau, 2012)
and evolutionary consequences (Ziska, 2008; Vogan &
Sage, 2012; Sage, 2020). For example, elevated [CO2] can stimu-
late photosynthesis, especially in C3 plants (Ainsworth &
Long, 2005; Ainsworth & Rogers, 2007; Faralli et al., 2017;
Zhang et al., 2021), and can augment fitness in some species, par-
ticularly when plants have access to ample water and nutrients
(Mohan et al., 2004; Wang et al., 2015; Apgaua et al., 2019).
Greater photosynthesis in high [CO2] environments can reduce
stomatal conductance (Ainsworth & Rogers, 2007; Saban
et al., 2019), and transpiration rates, which can induce stress due
to elevated heating (Allakhverdiev et al., 2008), mineral deficien-
cies (Loladze, 2014), and changes in metabolic signaling (Xu
et al., 2015; Baslam et al., 2020). This stress, in turn, can depress
photosynthetic rates, growth, and reproductive output (Bernacchi
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et al., 2006; Maschler et al., 2022; Poorter et al., 2022). Further-
more, elevated [CO2] can decrease the expression of genes
involved in photosynthesis in some species (Moore et al., 1999)
or tip the balance between carbon acquisition and carbon usage,
potentially resulting in maladaptation to elevated [CO2]
(Sage, 2020). Nevertheless, the effects of high [CO2] on plant fit-
ness remain largely uncertain, especially in noncrop systems
(Menezes-Silva et al., 2019).

Warming temperatures influence plant fitness performance
throughout the lifecycle (Zinn et al., 2010; Bewley &
Black, 2013; Hatfield & Prueger, 2015). For example, tempera-
ture can affect the timing and success of germination (Cochrane
et al., 2015; Hoyle et al., 2015), the rate of plant growth (Sage &
Kubien, 2007), the timing of flowering (Inouye, 2020), and all
aspects of reproduction, from pollen production and size to ovary
size, ovule number, floral display size and seed production
(Bykova et al., 2012; Tushabe et al., 2023). Photosynthetic
responses to temperature vary within a species across geographic
ranges, reflecting adaptation to local thermal environments (Fryer
& Ledig, 1972; Atkin & Tjoelker, 2003; Gunderson et al., 2010;
O’Sullivan et al., 2017; Kumarathunge et al., 2019; Dusenge
et al., 2021). Climate change could reduce the fitness of these
locally adapted populations, shifting the fitness landscape to favor
accessions from lower elevation or latitude populations, which
evolved under warmer thermal regimes.

Elevated [CO2] and rising temperatures do not occur in
isolation, and these factors can have additive, antagonistic, or
synergistic effects on plant ecophysiology and fitness (Zanda-
linas & Mittler, 2022). In some cases, elevated [CO2] can
counteract the negative fitness effects of increasing tempera-
tures (Clifford et al., 2000). For example, hotter temperatures
reduced photosynthesis in perennial ryegrass, but elevated
temperature and [CO2] restored photosynthesis to rates
expressed in ambient conditions (AbdElgawad et al., 2015).
In other cases, elevated [CO2] and warming temperatures
interact to affect fitness. For example, durum wheat (Triticum
durum) grown in a combined high [CO2] and temperature
environment displayed lower nitrogen reductase activity and
an overall decrease in seed nitrogen content compared with
plants exposed to only elevated [CO2] or elevated tempera-
tures (Jauregui et al., 2015). Comprehensive studies on crop
species have illuminated how some plant species will respond
to elevated temperatures and [CO2] at a physiological level
(e.g. reviews by van der Kooi et al., 2016; Leakey
et al., 2019; Zhang et al., 2021; Eckardt et al., 2023). How-
ever, to-date few multifactorial experiments have investigated
the interactive effects of increasing temperatures and [CO2]
on the physiology or fitness of noncrop species. The few stu-
dies available show that responses to increased temperature
and [CO2] vary by species. Elevated [CO2] and warmer tem-
peratures do not appear to interact to influence ecophysiology
in many tree species (Wang & Wang, 2021) nor in some
perennial grassland forb species (Pastore et al., 2020). How-
ever, higher temperatures can enhance photosynthesis in the
presence of elevated [CO2] in some grasses (Pastore
et al., 2020). Species-specific responses further highlight the

uncertainty in predicting performance of native plant species
in response to these climate change factors.

Elevational gradients provide exemplary systems for investigat-
ing biological responses to climatic variation, as climatic condi-
tions change greatly over short spatial scales (K€orner, 2007a, b).
In response to divergent selection, natural populations can adapt
to local environments across elevations (Halbritter et al., 2015;
de Villemereuil et al., 2018; Anderson & Wadgymar, 2020).
Globally, one common climatic pattern exists: as elevation
increases, temperatures decrease (Pepin & Lundquist, 2008). A
logical prediction, therefore, is that increasing temperatures
mediated by climate change at mid- or high-elevation locales
could favor lower elevation accessions that evolved under hotter
climates. Nevertheless, it is challenging to disentangle the contri-
butions of temperature from those of other agents of selection to
local adaptation across elevations (Lancaster & Hum-
phreys, 2020). Thus, studies that isolate the effects of tempera-
ture on the fitness of locally adapted ecotypes from divergent
elevations could illuminate the consequences of novel thermal
regimes (Malusare et al., 2023).

Elevational gradients in [CO2] are not quite as clear (Lin
et al., 2017), and we know much less about local adaptation to
variation in [CO2]. The partial pressure of CO2 declines with ele-
vation (Gale, 1972, 2004; K€orner & Diemer, 1987; Smith
et al., 2003; Smith & Johnson, 2009; K€orner, 2021), but it is not
clear whether this change limits photosynthetic rates of
high-elevation plants (Wang et al., 2017). In some cases,
high-elevation populations have greater rates of photosynthesis
than lower elevation populations (Gale, 1972; K€orner & Die-
mer, 1987; K€orner et al., 1988; Van de Water et al., 2002; Zhou
et al., 2011; K€orner, 2021), which could arise due to greater leaf
nitrogen content and smaller leaf sizes of the high-elevation acces-
sions (Wieser, 2007). As such, it is difficult to distinguish the
effects of [CO2] vs other factors on photosynthesis along eleva-
tional gradients. In some natural plant populations growing near
CO2 springs, individuals can experience [CO2] as high as
5338 ppm (Onoda et al., 2009; Leakey & Lau, 2012), which is
far above the ambient global average of c. 417 ppm in current cli-
mates (Lan et al., 2023). Common garden experiments using
Plantago asiatica sourced from these springs have found differen-
tiation in photosynthesis and productivity along this [CO2] gra-
dient (Onoda et al., 2009), indicating that [CO2] can act as an
agent of selection in plant populations (see also Leakey &
Lau, 2012). Nevertheless, the general uncertainty in the extent of
local adaptation to [CO2] reduces our ability to formulate predic-
tions about plant fitness in future [CO2] climates for species dis-
tributed across broad climatic gradients.

We conducted a multifactorial manipulation of temperature
and [CO2] to evaluate the interactive effects of temperature and
carbon dioxide on plant growth, physiology, and fecundity in a
growth chamber experiment. Additionally, we leveraged an older
common garden study to assess clines in photosynthesis under
natural conditions in the field. We focus this study on diverse
accessions of the ecological model species, Boechera stricta (Brassi-
caceae), sourced from natural populations distributed along an
elevation gradient. Natural populations of B. stricta have adapted
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to diverse habitats across climatic gradients, such as elevation
(Kiefer et al., 2009; Lee & Mitchell-Olds, 2011; Anderson
et al., 2015), making it an excellent model system for investigat-
ing plant performance under novel suites of climatic conditions.
We assessed plant performance at the leaf level using gas
exchange measurements as well as fitness across two simulated
growing seasons to assess whether instantaneous measures of per-
formance translate to fitness components. This experiment tested
whether enhanced performance from elevated [CO2] would com-
pensate for depressed performance from increased temperatures.
Alternatively, elevated [CO2] and temperature could have addi-
tive or synergistic effects on plant ecophysiology and perfor-
mance. We examined whether increasing temperatures would
favor accessions from low-elevation populations, which evolved
in historically warm climates. Finally, we tested whether novel
temperature and [CO2] regimes would interact to further shift
the fitness landscape toward accessions best capable of tolerating
increasing abiotic stress.

Materials and Methods

Focal species

Boechera stricta (Graham) Al-Shehbaz (Brassicaceae) is a peren-
nial forb native to the Rocky Mountains of North America,
where it is distributed broadly over elevational gradients and lati-
tudes ranging from Utah through Alaska (Fig. 1a; Al-Shehbaz &
Windham, 2010; Rushworth et al., 2011, 2022). Boechera stricta
primarily self-pollinates (Song et al., 2006), which allows us to
plant closely related siblings in different environments and study
genotype by environment interactions. To examine genetic clines
in plant physiology and performance in response to variable cli-
matic conditions, we first collected seeds from naturally occurring
individuals of B. stricta in populations at different elevations near
the Rocky Mountain Biological Laboratory in Gothic, Colorado
(Fig. 1a,b). We grew these seeds in the glasshouse for one genera-
tion to minimize maternal effects and generate full-sibling
families via self-fertilization (Wadgymar et al., 2018).

Experimental design

We conducted a multifactorial growth chamber experiment to
examine the interactions between elevated [CO2] and tempera-
ture on B. stricta ecophysiological traits and fitness. To simulate
future [CO2], we used the projected concentrations of the Repre-
sentative Concentration Pathway (RCP) 6.0, which considers a
medium stabilization effort to mitigate atmospheric greenhouse
gases by 2100 (van Vuuren et al., 2011). We used four growth
chambers (Conviron BDW40 chambers; Winnipeg, Canada) in
the Warnell School of Forestry at the University of Georgia con-
figured for contemporary (400 ppm) and late-century (650 ppm)
carbon dioxide concentrations. Owing to airflow in the building,
the chambers were unable to maintain [CO2] as low as 400 ppm;
thus, plants in the control treatment experienced an average
[CO2] of 465 ppm (Supporting Information Fig. S1).

We based the ambient temperature level on the average day-
time temperatures at Crested Butte, CO (elevation 2709 m)
from 1980 to 2020 and followed a growing season of May
through October, with an 8-wk winter vernalization period at a
constant 4°C (Fig. S2). Crested Butte is 9.4 km from the Rocky
Mountain Biological Laboratory and is close to several of the
lower elevation source populations (Fig. 1b). Nocturnal tempera-
tures in this record sometimes reach as low as �2.2°C early in
the growing season, which is below the minimum temperature
capability of the growth chambers. Thus, logistical constraints
required us to restrict minimum night-time temperatures to 4°C.
We set the elevated temperature treatment level to 4.75°C above
the 1980–2020 average during the day and 5.5°C during the
night (Fig. S1), based on 2080 projections under the RCP 6.0
scenario for the region (Vose et al., 2005; IPCC, 2014).

On 4 August 2021, we planted n = 7690 seeds on moist filter
paper in Petri dishes, which we placed in growth chambers set for
May treatment temperatures and [CO2] conditions (10–30
seeds/accession 9 61 accessions 9 4 treatments; with one acces-
sion from each of 61 natural populations; source elevation range:
2498–3673 m, Table S1; Fig. 1b). By sampling a single accession
from many populations, we maximized genetic diversity in this

(a)

(c)

(d)

(b)

Fig. 1 (a) Range of Boechera stricta in blue, with
the region near the Rocky Mountain Biological
Laboratory (RMBL) in Gothic, Colorado
highlighted in red (b) Inset depicts a topographic
map (elevation, m) of RMBL and the surrounding
area. Open circles denote the source populations
used in this study, and the white triangle
indicates the location of the weather station in
Crested Butte, Colorado. (c) A flowering
individual of B. stricta. (d) An example of the
growth chamber blocks with flowering
individuals in a bottom-watering trough.
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experiment (Goudet & Buchi, 2006; Blanquart et al., 2013;
Anderson et al., 2015). Owing to low germination rates (28.9%),
we initiated a second round of seed planting on 4 September
2021. We accounted for these two planting efforts by including a
fixed effect of cohort in our statistical models. We transplanted
n = 1816 seedlings from 61 accessions into conetainers (Stuewe
and Sons, Tangent, OR, USA, RL 10 cu. inch conetainer; OR,
USA) with pine bark soil (Sungro Metro-Mix 838; Sungro Hor-
ticulture, Agawam, MA, USA) when two cotyledons were present
(see Table S1 for a breakdown of total sample sizes for each
cohort, accession, and treatment).

We treated the plants with 20-10-20 fertilizer monthly (JR
Peters Jack’s peat lite; JR Peters Inc, Allentown, PA, USA) during
the juvenile growth phase. In B. stricta, exposure to a cold period,
or vernalization, is necessary to induce flowering (Anderson
et al., 2011); therefore, we reduced growth chamber temperatures
to a constant 4°C on 11 February 2022 when plants were
160–190 d old. During the 8-wk vernalization period, we main-
tained all individuals at their treatment [CO2] and provided them
with ample water, but we did not fertilize them. After we ended
vernalization on 11 April 2022, we fertilized adult plants monthly
with 10-30-20 fertilizer (JR Peters Jack’s blossom booster; JR
Peters Inc). Throughout the experiment, plants were treated with
larvicide (Gnatrol WDG; NuFarm, Nufarm Americas Inc., Alsip,
IL, USA) one to two times per month (except during vernaliza-
tion) to eliminate arthropod herbivores. We set the daylength to
14 h at 800 lmol s�1 throughout the experiment, except during
vernalization, when daylength was reduced to 0 h to simulate
snow cover conditions (Keller & K€orner, 2003). Humidity was
set to the May–October average field value of 55%. Every month,
we changed the temperature conditions in the growth chambers,
allowing us to simulate a full growing season (May through Octo-
ber; Table S2), and we moved plants and their corresponding
treatments across chambers to minimize chamber effects. Blocks
were rotated weekly within each chamber to reduce positional
effects. Due to space limitations, we were unable to vary watering
schemes to simulate drought. Therefore, for the duration of the
experiment, we placed each conetainer tray into watering troughs,
which we filled daily to maintain well-watered conditions.

Ecophysiology

When plants were 100–120 d old, we measured ecophysiological
parameters with a LI-6800 portable photosynthesis system
(LI-COR, Lincoln, NE, USA) during simulated July conditions
of the first growing season (11–16 December 2021). We selected
41 accessions with multiple living siblings across treatments for
these measurements (n = 297 individuals and 41 accessions
spanning the elevational gradient of 2553–3673 m; n = 2–6/
accessions/treatment). To follow best practices (LI-COR, 2022),
we measured gas exchange at 23.1°C for plants in the contempor-
ary temperature treatment and 27.9°C for plants in the elevated
temperature treatments, reflecting the temperatures set for that
month in the two treatment levels, and a [CO2] of 400 or
650 ppm for contemporary vs future treatments. We measured
photosynthetic active radiation at plant height, and we set the

light level in the cuvette to 500 lmol m�2 s�1 to match this
reading. As the leaves of B. stricta are smaller than the LI-COR
cuvette chamber, after the measurements were completed, we
removed all leaves measured for gas exchange and scanned them
to determine leaf area using ilastik (Berg et al., 2019). We
adjusted the leaf area in LI-COR’s gas exchange calculations to
obtain assimilation rate (A), evapotranspiration rate (E), stomatal
conductance (gs), ambient CO2 (Ca) and intracellular CO2 (Ci)
values per leaf area for each sample. We measured plants ran-
domly chosen from each of the four treatments from 10:00 to
14:00 daily over 6 d (11–16 December 2021, average samples
per day = 61.2 � 17.8.)

Fitness components

We recorded three fitness components: (1) the probability of sur-
vival to the end of the experiment, (2) the probability of repro-
duction, and (3) fecundity among individuals that reproduced.
In this study, some individuals reproduced and then died before
the end of the experiment, necessitating consideration of both of
these binary components of fitness. After transplanting seedlings
into conetainers, we monitored survival two to four times a
month until we induced vernalization. After vernalization, we
censused the plants daily to monitor flowering success. We
assessed fecundity by counting the total number of all mature
fruits, which is tightly correlated with total seed production
(Wadgymar et al., 2017). We completed the experiment at the
end of the second simulated September (23 August 2022), when
reproductive plants had finished fruiting. As B. stricta is a peren-
nial, it can reproduce more than once. However, previous field
studies have shown that experimental plantings of B. stricta pro-
duce most of their lifetime fruit set in their first reproductive year
(Wagner & Mitchell-Olds, 2018). For example, in a field experi-
ment in five common gardens, an average of 73% of B. stricta
seeds produced during 6 yr matured in the first growing season
(Hamann et al., 2021). In addition, seed production early in life
history contributes more to population growth rate and evolution
than later fecundity (Stearns, 1976). Therefore, the fitness com-
ponents we captured in this experiment likely reflect robust fit-
ness responses to the treatments we imposed.

Field common garden experiment

To test the hypothesis that photosynthetic rate increases with
source elevation (K€orner & Diemer, 1987; K€orner, 2021), we
measured assimilation rates on 68 transplanted individuals from
22 accessions (source elevations: 2869–3682 m) in a field com-
mon garden at 3133 m near the Rocky Mountain Biological
Laboratory (Gothic, Colorado) on 26 July 2013. Only nine
accessions from this field experiment were included in our growth
chamber experiment while 13 were unique to the field common
garden. We used a Li-COR 6400 portable gas analyzer with
[CO2] set to 380 ppm, air temperature in the cuvette set to
20°C, and photosynthetically active radiation set to 1500 lmol
m�2 s�1. This small ecophysiological dataset was not included in
previous publications from this common garden experiment
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(Anderson et al., 2015; Anderson & Gezon, 2015; Wadgymar
et al., 2017).

Statistical analyses

To examine the interactive effect of elevated [CO2] and tempera-
ture on gas exchange physiology, we analyzed photosynthesis (A),
transpiration (E), stomatal conductance (gs), and intrinsic water
use efficiency (A/gs; iWUE) as a function of source elevation,
temperature treatment, CO2 treatment, and cohort (to account
for the two rounds of germination needed to achieve adequate
sample sizes), as well as all treatment by elevation interactions,
with random effects for accession and experimental block. We
modeled these traits using the glmmTMB function of the
GLMMTMB package v.1.1.15 (Brooks et al., 2017). We standar-
dized source elevation to a mean of 0 and standard deviation of 1
to enable model convergence. We examined statistical signifi-
cance of main effects using the Anova function of the CAR R pack-
age v.3.0 (Fox & Weisberg, 2019) and random effects through
likelihood ratio tests of models with and without accession and
block. We visualized the regression results and partial residuals
with the VISREG R package v.2.7.0 (Breheny & Burchett, 2017)
and using the R package VIOPLOT v.0.4.0 (Adler et al., 2022). To
reduce the risk of type I errors, we adjusted our a to 0.0125
(=0.05/4 physiological variables). We square root transformed
stomatal conductance, transpiration, and iWUE to meet statisti-
cal assumptions of normality and homoscedasticity of residuals.
We determined that the residuals were normally distributed and
homoscedastic using the simulateResiduals function of the R
package DHARMA v.0.4.6 (Hartig, 2022). We present the results of
statistical models using these transformed variables, but we
plotted raw data in our figures to evaluate our hypotheses using
biologically meaningful units.

To examine fitness data, we analyzed survival, the probability
of reproduction, and fecundity as a function of cohort, source
elevation, temperature, and CO2 treatment, as well as the two-
and three- way interactions of source elevation, temperature, and
CO2, with random effects for block and accession. We standar-
dized source elevation to a mean of 0 and standard deviation of 1
to enable model convergence. As with many studies of fitness,
our fecundity data contain an excess of zero values because of
individuals that died or simply failed to reproduce. Initial models
of composite fitness using approaches such as zero-inflated
Gamma regressions in the glmmTMB function of the
GLMMTMB package (v.1.1.5; Brooks et al., 2017) generated resi-
duals that did not conform to assumptions of homoscedasticity
or normality. Therefore, we modeled fitness components sepa-
rately and verified normality and homoscedasticity of residuals in
all models using the simulateResiduals function of the DHARMA

package v.0.4.6 (Hartig, 2022). We analyzed the probability of
survival and reproduction using the glmmTMB function of the
GLMMTMB package (v.1.1.5; Brooks et al., 2017), with a bino-
mial distribution and logit link. We modeled fecundity
(the number of fruits among individuals that reproduced) using
the glmmTMB function of the package GLMMTMB as a Gamma
distribution with a log link. We visualized results using GGPLOT2

v.3.4.2 (Wickham, 2016) and GGEFFECTS v.1.3.2 (L€udecke, 2018).
We corrected for multiple comparisons using an a of 0.0167
(=0.05/3 fitness components).

To evaluate the effects of source elevation on gas exchange
traits in our field common garden data, we analyzed photosynth-
esis as a function of source elevation with random effects for
experimental block and accession using the glmmTMB function
of GLMMTMB (Brooks et al., 2017). We followed the same pro-
tocols as outlined above to examine the statistical significance.

Results

Gas exchange traits

Owing to the time-intensive nature of the measurements, we
measured gas exchange traits on only a subset of the experimental
plants (n = 297 individuals from 41 accessions). In these plants,
elevated [CO2] augmented photosynthesis rate by c. 50%
(v2 = 29.60, P < 0.0001; Fig. 2), but there were no effects of
temperature or source elevation on photosynthesis (Table S3).
Both elevated temperature and increased [CO2] significantly
heightened iWUE (temperature: v2 = 8.41, P = 0.004; [CO2]:
v2 = 34.91, P < 0.0001; Fig. 3) regardless of source elevation

Fig. 2 Violin plots of photosynthesis rates (assimilation) were significantly
greater for plants exposed to high [CO2] in Boechera stricta. Gray circles
indicate data points. The vertical lines within the violin plots represent the
upper and lower quartiles. The center diamond indicates the median. The
width of the violin plots depicts the density of data points.

Fig. 3 Violin plots of intrinsic water use efficiency (iWUE), measured as
the ratio of assimilation to stomatal conductance (A/gs), increased under
both high temperature and high [CO2] in Boechera stricta. Gray circles
indicate data points. Letters denote significance from a post hoc pairwise
comparison. The vertical lines within the violin plots represent the upper
and lower quartiles. The center diamond indicates the median. The width
of the violin plots depicts the density of data points.
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(Table S4). Our analysis revealed a significant interaction
between CO2 and source elevation for transpiration rates
(v2 = 6.97, P = 0.0083; Table S5). Under low [CO2], transpira-
tion declined by 0.18 mmol m�2 s�1 for every one standard
deviation (280 m) increase in elevation (b = �0.18, 95% confi-
dence interval: �0.37, �5.3e-4; Fig. 4). Conversely, there was a
nonsignificant positive slope under high [CO2] (b = 0.13, 95%
CI: �0.06, 0.31). We recovered a [CO2] by source elevation
interaction in stomatal conductance (gs; P = 0.019), which fol-
lowed the same patterns as transpiration, but this interaction was
nonsignificant after correction for multiple testing (Table S6).

Fitness components

The probability of survival varied as a function of a significant
three-way interaction among [CO2], temperature and the quad-
ratic effect of source elevation (v2 = 6.10, df = 1, P = 0.014;
Table S7). Under elevated [CO2] and contemporary tempera-
tures, the odds of survival increased by 75% for every standard
deviation increase in elevation (odds ratio: 1.75, 95% CI: 1.27,
2.43; Table S8), indicating the highest elevation accessions had
the greatest survival in that treatment combination. However, the
optimum elevation of origin for survival decreased to 3293 m
under projected future environments with high [CO2] and high
temperatures (Fig. 5a; odds ratio for quadratic effect of elevation:
0.76, 95% CI: 0.60, 0.97). We found no significant effects of
source elevation on survival in either temperature treatment in
the low [CO2] environment.

Elevated temperature depressed the probability of reproduc-
tion in both [CO2] levels (v2 = 10.30, df = 1, P < 0.01;
Table S7; Fig. 5b). Furthermore, we found a significant effect
of source elevation on probability of reproduction, with
high-elevation accessions having the highest probability of repro-
duction in all treatment combinations (v2 = 5.87, df = 1,
P = 0.015, Fig. 5b).

Finally, our fecundity model revealed a significant interaction
of [CO2] and source elevation (v2 = 5.94, df = 1, P = 0.015;

Table S7) on the number of mature fruits produced. We found
an interaction between source elevation and temperature, but it
was only marginal at our adjusted alpha of 0.017 (v2 = 4.40,
df = 1, P = 0.04). Under high [CO2] and high temperatures,
mature fruits decreased by 20% for every standard deviation
increase in elevation (b = 0.801, 95% CI: 0.70, 0.91; Table S9;
Fig. 5c), but there was no effect of source elevation on fecundity
in the other treatment combinations.

Field common garden experiment

Photosynthetic rates increased by 0.28 lmol CO2 m�2 s�1 for
every standard deviation increase in elevation (b = 0.28, 95%
CI: 0.059, 0.51; v2 = 6.12, P = 0.013; Fig. 6).

Discussion

Our multifactorial growth chamber experiment revealed note-
worthy shifts in the fitness landscape under novel climatic factors
for several major fitness components. Firstly, elevated tempera-
tures depressed the probability of reproduction across all acces-
sions and both [CO2] levels. Additionally, [CO2] and
temperature interacted synergistically to shape the viability and
fecundity clines. Specifically, fecundity declined with source ele-
vation only in the high [CO2] and high-temperature treatment
combination, indicating that low elevation accessions are
uniquely capable of tolerating increased abiotic stress associated
with climate change. Furthermore, our analyses demonstrated
that increased temperature and elevated [CO2] shifted the viabi-
lity cline to favor lower elevation accessions compared with what
we found under elevated [CO2] alone. These results underscore
the importance of considering complex interactions among envir-
onmental factors to predict responses to climate change.

We predicted that elevated [CO2] would increase leaf-level eco-
physiology and fitness. In line with our prediction, we found that
high [CO2] induced greater photosynthesis and water use effi-
ciency. Nevertheless, this instantaneous increase in performance
did not translate to higher fitness for all accessions. Rather, the
effect of heightened temperature and [CO2] on fitness after two
seasons of growth depended upon the source elevation of the
accession, indicating that the evolutionary history of the accession
drives the fitness responses to changing climatic factors. Elevated
[CO2] may offset reductions in fecundity for low-elevation acces-
sions, but we found no evidence that greater [CO2] compensates
for thermal stress for other accessions or components of fitness. In
fact, higher temperature reduced the probability of reproduction
for all accessions under both low and high [CO2] regimes.

Plant performance through gas exchange traits

Concordant with other work (Ainsworth & Rogers, 2007; Busch
& Sage, 2017; Dusenge et al., 2019), we found that elevated
[CO2] augmented photosynthesis and water use efficiency via phe-
notypic plasticity. Increased photosynthesis and water use effi-
ciency are the most common responses to elevated [CO2] in C3
plants (Drake et al., 1997; Leakey et al., 2019). This increase

Fig. 4 Transpiration rate (E) declined with increasing source elevation
under low (contemporary) [CO2] in Boechera stricta. Under high (future)
[CO2], we found no significant relationship between transpiration rates
and source elevation. Solid black lines indicate the predicted relationship
between source elevation and transpiration and gray shading represents
95% confidence intervals for significant relationships only.
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occurs due to higher carbon availability and reduced photorespira-
tion – the carbon-costly process in which Rubisco fixes O2 rather
than CO2 (Busch & Sage, 2017; Ainsworth & Long, 2021). We
found a significant interaction between [CO2] and source eleva-
tion on transpiration, which indicates that accessions from across
this climatic gradient differentially respond to [CO2] under con-
temporary conditions. Under elevated [CO2], low-elevation
accessions may experience reduced transpiration rates compared
with high-elevation accessions. Low transpiration can decrease
nutrient uptake (Loladze, 2014) and reduce photosynthesis
(Dusenge et al., 2019; Ainsworth & Long, 2021; Gojon
et al., 2023). As B. stricta is locally adapted to nutrient and water
availability (MacTavish & Anderson, 2020), decreased transpira-
tion rates could disproportionately affect nutrient uptake in
low-elevation accessions under future [CO2] environments.

Fig. 6 Photosynthesis (assimilation rate) increased with source elevation
(m) in 68 individuals from 22 Boechera stricta accessions growing in a
common garden at 3133 m. Circles indicate data points. The gray band
indicates the 95% confidence interval.

(a)

(b)

(c)

Fig. 5 Fitness varied with treatment in Boechera

stricta accessions source from across a broad
elevational gradient. (a) The probability of
survival increased with source elevation (km)
under contemporary (low) temperatures in the
high [CO2] treatment level. Elevated [CO2] and
high temperatures induced a shift towards a
lower optimal elevation of 3.3 km. (b) Elevated
temperatures depressed the probability of
reproduction for all accessions at both [CO2]
levels. (c) Low-elevation accessions had elevated
fecundity in the combined [CO2] and
temperature treatment level, but fecundity did
not vary with source elevation in the other
treatment combinations. In all panels,
high-temperature treatments are indicated in red
with dashed line prediction regression
relationships and low-temperature treatments are
in blue with solid lines. Circles indicate data
points. Shading represents the 95% confidence
intervals for low (blue) and high (red)
temperatures.
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The genotype by environment (G 9 E) interaction for tran-
spiration indicates that B. stricta’s ecophysiological response to
elevated [CO2] associated with climate change depends upon the
elevation in which the accession evolved. Detecting genotype by
environment interactions in gas exchange traits can be difficult,
as it requires exposing accessions collected from multiple popula-
tions to a variety of environmental conditions. In Arabidopsis
thaliana, elevated [CO2] induced greater stomatal density in
some accessions from low-elevation sites but reduced stomatal
density in some high-elevation accessions (Caldera et al., 2017).
Additionally, Premoli & Brewer (2007) found substantial differ-
ences in assimilation rates and water use efficiency in low- vs
high-elevation accessions of southern beech (Nothofagus pumillo)
in a common garden experiment and natural field populations.
Similarly, assimilation rate and stomatal conductance increased
with elevation in a species of European oak (Quercus petraea) and
beech (Fagus sylvatica) in natural settings (Bresson et al., 2011).
However, when grown in a common garden, source elevation did
not influence ecophysiology, indicating that plasticity likely
underlies phenotypic variation in gas exchange across populations
of these trees (Bresson et al., 2011). Exposing accessions sourced
from multiple locations to a variety of environmental factors will
increase realism and enhance our predictive abilities to under-
stand how climate change may disrupt local adaptation. This can
provide valuable insight into a species’ response to environmental
changes, especially as we bridge the gap from genomic and cellu-
lar realms to ecosystems and earth modeling (Lasky et al., 2023;
Verslues et al., 2023).

Many environmental factors such as temperature, water avail-
ability, solar radiation, vapor pressure deficit, and atmospheric
pressure change rapidly along elevational gradients and can influ-
ence gas exchange (Gale, 1972; Gale, 2004; K€orner, 2007a, b,
2021; Smith & Johnson, 2009). Additionally, high-elevation
plants often have thicker mesophyll layers and higher nitrogen
content than low-elevation populations, which can facilitate
greater photosynthesis at higher elevations (K€orner & Die-
mer, 1987; K€orner, 2021). In our common garden field experi-
ment, B. stricta photosynthetic rates increased with source
elevation, concordant with K€orner & Diemer’s (1987) hypothesis.
Nonetheless, our growth chamber experiment did not uncover
any effect of source elevation on photosynthesis in any combina-
tion of [CO2] and temperature, indicating environmental vari-
ables beyond [CO2] and temperature contribute to the evolution
of photosynthesis rates in nature. Taken together, the field and
growth chamber data suggest that high-elevation accessions may
have a photosynthetic advantage under specific contemporary con-
ditions, which may not translate to future environments expected
under climate change. These results highlight the need to exercise
caution in using gas exchange data from contemporary environ-
ments to scale to future scenarios. For example, a common prac-
tice in modeling the impacts of climate change is to use leaf-level
data and scale up to ecosystems (Smith et al., 2019; Denney et al.,
2020; Fisher & Koven, 2020). However, neglecting the complex-
ity of accessions from along environmental gradients and their
varying responses to future conditions will decrease our accuracy
in model climate change in natural systems (Funk et al., 2017).

Fitness components

We found elevated [CO2] enhanced photosynthesis and water
use efficiency, but this increase did not translate to greater fitness
in all accessions, as high-elevation accessions showed decreased
probability of survival, reproduction, and fecundity. Thus,
instantaneous measurements of ecophysiology may not reflect fit-
ness components that manifest over longer periods of time (Kim-
ball et al., 2012; Laughlin et al., 2020). For instance, enhanced
photosynthesis and growth under elevated [CO2] did not increase
the reproductive output of perennial ryegrass (Lolium perenne)
and white clover (Trifolium repens; Wagner et al., 2008). Indeed,
an analysis of 30 yr of free-air CO2 enrichment studies indicated
that elevated [CO2] and temperature often elicit enhanced photo-
synthesis but this does not frequently result in greater seed pro-
duction in crop plants (Ainsworth & Long, 2021). A reduction
in fecundity can have dire consequences for local populations,
especially those facing contractions due to climate change (Pear-
son et al., 2014; Valladares et al., 2014).

Spatial constraints in the growth chambers prevented us from
including soil moisture as an additional factor in our experiment.
In the Rocky Mountains, elevated temperatures have reduced soil
moisture availability through declining snowpack and early snow-
melt (Rangwala et al., 2012; Pepin et al., 2015; Fyfe et al., 2017).
The timing of snowmelt will continue to accelerate under pro-
jected climate scenarios (Lute et al., 2022), exposing B. stricta
and other montane species to heightened drought stress. A glass-
house experiment demonstrated that drought stress depresses
fecundity in high-elevation accessions of B. stricta (MacTavish &
Anderson, 2020). In our growth chamber study, low-elevation
accessions had greater fecundity when exposed to increased tem-
perature and [CO2] than the higher elevation accessions. Under
drought conditions, this fitness advantage of low-elevation eco-
types may be further exacerbated. This hypothesis awaits testing
in future experiments.

Shifts in the fitness landscape

In our experiment, elevated temperature and [CO2] shifted the
fitness landscape for the probability of survival and fecundity,
highlighting the importance of multifactorial climate manipula-
tions. Specifically, the probability of survival increased with
source elevation under high [CO2] and contemporaary tempera-
ture, but not in elevated [CO2] and higher temperatures, in
which the optimal survival occurred for accessions from a full
380 m lower in elevation (3293 m) than our highest elevation
ecotype (3673 m). Furthermore, the shift in fitness landscape var-
ied across fitness components, with the lowest elevation acces-
sions (2499 m) expressing the highest fecundity in the
multifactor climate change scenario (high [CO2] + high tem-
perature). Thus, it is critical to evaluate fitness components across
life history stages (Acasuso-Rivero et al., 2019), especially as
plants experience variation in environmental conditions during
the course of their life (Kulbaba et al., 2023). Multiple abiotic
and biotic agents of selection interact to influence a plant’s fit-
ness. (Greenbury et al., 2022). Water (Lee & Mitchell-Olds,
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2013) and nutrient availability (MacTavish & Anderson, 2022)
as well as snowmelt (Anderson & Wadgymar, 2020) are impor-
tant drivers of fitness and local adaptation in B. stricta. For exam-
ple, low-elevation accessions have elevated fitness under drought
stress in the glasshouse (MacTavish & Anderson, 2022) and
advancing snowmelt projected under climate change in the field
(Anderson & Wadgymar, 2020). A meta-analysis of locally
adapted species along elevation gradients revealed temperature
and precipitation are strong drivers of local adaptation (Midolo
& Wellstein, 2020), indicating that many systems may experi-
ence adaptational lag or local maladaptation as climate change
progresses (Wilczek et al., 2014; Kooyers et al., 2019; Anderson
& Wadgymar, 2020; Leites & Benito, 2023). Here, elevated
[CO2] and temperature interacted to reduce the fitness of
high-elevation accessions, demonstrating that climate change
could further disrupt local adaptation. In many systems, increas-
ing temperatures are causing maladaptation, including T. repens
(Wright et al., 2022), Clarkia pulchella (Bontrager &
Angert, 2019), and A. thaliana (Exposito-Alonso et al., 2019).

Atmospheric [CO2] is a strong selective agent on plant traits
(Ward & Kelly, 2004; Steinger et al., 2007; Leakey & Lau, 2012;
Jonas & Cioce, 2019), and increasing levels will differentially
affect species based on their carbon capture mechanism (i.e. C3
vs C4 and CAM photosynthesis, Sage, 2020; Verslues
et al., 2023). Earlier flowering time in A. thaliana may be driven
by the interaction of rising temperatures and elevated [CO2]
(Walker 2nd & Ward, 2018), which altered fitness landscapes
across life history stages of B. stricta in our study. Elevated [CO2]
could also reduce drought tolerance (Medeiros & Ward, 2013;
Temme et al., 2019), which can be exacerbated by warming tem-
peratures (Duan et al., 2014; Grossiord et al., 2020). We may be
able to improve our predictions for the future by examining plant
resposes to lower [CO2] in historical environments (Gerhart &
Ward, 2010). For example, C3 plants evolving during the
glacial–interglacial cycles experienced drastic fluctuations in
[CO2] and may already contain variation that can buffer against
negative effects of rapidly changing [CO2] (Beerling, 2005) or
facilitate adaptation through plasticity (Gunderson et al., 2010;
Andresen et al., 2016). For example, B. stricta demonstrates sub-
stantial plasticity in stomatal traits (Anderson & Gezon, 2015),
which may facilitate adaptation to elevated [CO2] under drought
stress and rising temperatures. Conversely, adaptation to lower
[CO2] in the geological past could constrain adaptations to
increasing [CO2] in contemporary environments (Etterson &
Shaw, 2001; Temme et al., 2019).

In this study, low-elevation accessions experienced higher
fecundity under elevated [CO2] and temperatures. Similarly, in
five common gardens in field conditions, low-elevation ecotypes
outperformed local ecotypes in current climates and under snow
removal manipulations, which simulate advancing snowmelt
under climate change (Anderson & Wadgymar, 2020). Together,
these results highlight that low-elevation ecotypes are locally
adapted to hot arid environments with high [CO2]. This pattern
is congruent with the elevational gradient in climate in this sys-
tem, with hot and arid low-elevation environments becoming
cooler and moister at higher elevations (Anderson &

Wadgymar, 2020). Furthermore, this result suggests that these
low-elevation ecotypes may be the most capable of tolerating
warming and aridifying conditions. Nevertheless, a demographic
model using data from a reciprocal transplant experiment in B.
stricta indicates that low- and mid-elevation populations risk
rapid decline under decreased snowpack driven by climate change
(Anderson & Wadgymar, 2020), likely because climate change is
pushing these trailing edge populations outside of their climatic
niche. Furthermore, increasing [CO2] is occurring in conjunction
with shifts in aridity, snow dynamics and temperature, all of
which influence local adaptation and fitness in B. stricta (MacTa-
vish & Anderson, 2020; Hamann et al., 2021). Thus, the interac-
tion of elevated [CO2], temperature, drought stress, and other
environmental stressors may have profound effects on fitness
under future climate scenarios even for low-elevation ecotypes
that are locally adapted to hot and dry conditions. As such, local
adaptation to historical climates may not be sufficient to buffer
even these low-elevation ecotypes from reductions in fitness due
to climate change.

Conclusions

In this multifactorial experiment, we demonstrate temperature
and [CO2] interact to shape the fitness landscape of B stricta.
Additionally, instantaneous measurements of ecophysiological
performance did not translate to more integrated proxies for fit-
ness, as we found greater [CO2] did not offset thermal stress in
most accessions as expected (Zandalinas & Mittler, 2022; Eck-
ardt et al., 2023). However, in the lowest elevation accessions,
the combination of elevated [CO2] and temperature increased
fecundity. By exposing accessions sourced from along an eleva-
tional gradient to temperatures and [CO2] levels relevant to con-
temporary landscapes, we found the evolutionary history of this
species drives the fitness response to changing climates. Our
results suggest that climate change will have severe fitness effects
on this locally adapted species.
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